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Contact and adhesion between two elastic solids bonded by a thin elastic adhesive are considered. The 
peculiar case of a rigid flat cylindrical punch being adhered to an elastic layer is considered. In order to 
evaluate the influence of adhesive thickness on the mechanical behaviour of the bonded solids, an 
approximate solution of the contact problem is derived, using the Ritz method. Comparison of the analytical 
solution with FE calculationsshows a good convergence towards the asymptotic value when the ratio of the 
punch radius to the layer thickness is greater than 4. 

Numerical simulation reveals a strong effect of the adhesive compressibility, for a thin adhesive. This effect 
is assessed quantitatively from a double asymptotic expansion of the analytical solution. Lastly, the rupture 
stress is evaluated as a function of the adhesive thickness, from the knowledge of the solution of the contact 
problem; the asymptotic value for a very thin adhesive is determined independently. 

KEY WORDS Adhesion of a punch; analytical model; asymptotic expansion; variational method; fracture 
mechanics; tensile failure 

1. INTRODUCTION 

This paper addresses the problem of modelling the mechanical behaviour of two solids 
(the adherends) bonded together by a thin adhesive elastic layer. Industrial applications 
of this problem are more and more involved in the recent years due to the progress in 
bonding techniques which enable the use of adhesive bonding in high load situations 
with an increased confidence.' Moreover, several mechanical tests of adhesion (e.g. the 
peel test, the double cantilever beam, pull-out or fragmentation of single fiber compos- 
ites) fall into this category of problems, which appear therefore equally pertinent from a 
scientific point of view. A further related problem of outstanding importance concerns 
the modelling of elastic multi-structures, i.e. elastic bodies made of different substruc- 
tures of possibly different dimensions (three-dimensional substructures, plates, shells, 
rods) and properties, which very commonly occur: folded plates, H-shaped beams, 
plates clamped in three-dimensional foundations, plates or shells with stiffeners. 

Evaluation of stresses transmitted from the adherends through the adhesive in the 
general case is a quite complicated task, since it would imply consideration of the 
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286 J. F. GANGHOFFER AND J. SCHULTZ 

adhesive as a three-dimensional body undergoing 'large displacement or/and large 
strains (this is typically the case in the peel test, which involves large displacements and 
rotations near the peel front); in addition, the adhesive has generally a viscous 
behaviour, which is both time and temperature dependent. Therefore, a simplified 
modelling of the adhesive behaviour is needed, in order to make the problem tractable 
from an analytical point of view. 

From the pioneering work of Goland e t d 2 ,  there have been numerous stress 
analysis of adhesive joints, where assumptions concerning the displacement and/or 
stress fields in the adhesive have been made. Following this work, models where the 
governing equations are simplified in order to eliminate the dependence of the 
through-the-thickness coordinate were obtained, thus considering the adhesive as a 
material surface. This kind of description is equivalent to evaluating averaged stresses 
through the thickness of the adhesive making the comparison with experimental 
measurements (averaged stresses are those directly evaluated experimentally) feasible. 
From this description, both analytical models and special finite element methods were 
given by Reddy3 and Carpenter.4 

The now classical plate theories fall into the same category of approaches, which 
simplify the original three-dimensional problem into a problem having a lower 
dimensionality: these are the Von-Karman equations for the two-dimensional, non- 
linear plate theory, and the Love-Kirchhoff theory in the linear case, see Ciarlet.5 

2. REVIEW OF THE ASYMPTOTIC METHOD 

2.1 Generalities 

In a second type of method, called the asymptotic method, one tries to construct the 
solution of the three-dimensional problem as a series development of the unknowns in 
terms of a small non-dimensional parameter, E (for instance, the ratio of the plate 
thickness to a characteristic macroscopic length); the first term in the series represents 
the limit as E+O, which is an approximation of the original problem (Ciarlet6 and 
Verhulst'). Asymptotic analysis relies mathematically (and particularly considering the 
open problem of convergence of the asymptotic development for a finite value of E )  on 
the general techniques developed by Lions' for handling linear variational problems 
containing a small parameter. Methods of asymptotic expansion have been shown to 
provide a powerful and systematic (although rather formal) tool for justifying two- 
dimensional plate theories, in both the linear and non-linear cases: the leading term of 
the asymptotic development of the three-dimensional solution indeed solves the 
classical equations of the plate theories, with fewer assumptions and, therefore, greater 
understanding and confidence. Compared with traditional plate theory, the asymptotic 
method provides more information about the general three-dimensional solution, since 
it gives additional higher order terms and boundary layer terms. 

Asymptotic methods were first applied to plate problems posed as partial differential 
equations; in that case, some a priori assumptions are still needed. For instance, 
Goldenvei~er~ assumes that the effect of volume forces can be neglected and that the 
required state of strain and stress is skew-symmetrical about the middle-plane. In 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
0
0
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



ANALYTICAL MODEL OF ADHESIVE JOINTS 287 

addition, some difficulties arise concerning the kind of boundary conditions to be 
considered for the successive terms of the asymptotic expansion (Friedrichs"). A 
further source of difficulty lies in the absence of a satisfactory convergence analysis, due 
to both the setting-up of the problem as a set of differential equations (instead of a single 
one) and the lack of a maximum principle (Eckhaus"). 

More recently, Ciarlet" applied asymptotics to three-dimensional linear plate 
problems posed in a mixed variational form (displacement-stress approach) called the 
Hellinger-Reissner variational principle (Wa~hizu '~ and Valid14). In that approach, 
both the displacement and the stresses are considered as unknowns, and such a setting 
has been shown by previous authors to be the natural one for proving convergence of 
the development, and for obtaining error estimates. 

Quite recently, Klarbring' developed an asymptotic model of adhesively-bonded 
joints on the same basis, where several equivalent variational formulations of the model 
are given. Of particular interest is the discussion concerning the Occurrence and nature of 
a boundary layer, and the comparison with plate models in terms of deformation modes. 

2.2 Contact W e e n  a Rigid Cylindrical Punch and a Thin Elastic Layer: Calculation 
of the Equivalent Stifin- 

The contact law for a thin elastic adhesive has been derived by Klarbring;" the 
first-order solution (superscript 0) corresponds to the situation of an adhesive having a 
vanishing thickness and is characterised in the following way. The in-plane stresses are 
given by: 

V V 
0;,=0; f&=- 4,; 0i2 = - u;, 

1 - v  1 - v  

and the normal traction satisfies: 

a:,,, = 0. 

Equation (2) and the expression of the in-plane stress components show that the stress 
tensor oo is constant through the adhesive thickness, while (3) implies that the dis- 
placement uo varies linearly through the adhesive thickness, and we can write therefore 

(4) 
1 

2 2 UO = 5 ( y 1  110 - y2u0) + -(yl UO + yzu0) 

where y ,  is the thickness coordinate and yAuo the trace of uo on each interfaces 

These results show that the solution of the first order problem of the expansion does 
not involve any dependence of the field variables on the thickness coordinate; therefore, 
the adhesive can be treated as a material surface, letting the mechanical fields within the 
adhesive depend only on their boundary value on it. Klarbring showed that this 
situation prevails also for the higher order problems, and the determination of the 
complete expansion of the displacement and stress fields involves the recursive solution 

s,, A = 1,2. 
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288 J. F. GANGHOFFER AND J. SCHULTZ 

of a sequence of problems, in each of which the adhesive can be considered as a material 
surface. 

We now consider the contact under compression between a flat rigid cylindrical 
punch and a soft elastic layer of an elastomeric material (for instance, rubber). 

It is asumed that there is continuity of displacement at both contact surfaces (perfect 
adhesion condition), and that the punch is rigid enough (compared with the elastic 
layer) so that any bending is prevented. From relation (3), we then deduce the 
expression of the normal stress for a layer having thickness, t (Fig. 1): 

where v is the Poisson's ratio of the layer and U is the displacement field at the 
punch-elastic layer boundary, supposed to be under compression. The previous 
relation is now integrated on the contact surface, resulting in the compression force 
exerted by the rigid punch: 

Pa 

F =  - J  2 n r ~ : ~ ( r ) d r = n a ~ U E ( l - v ) / t ( l  +v)(l  -2v) 
0 

since the imposed displacement is constant on the contact area, due to the flatness of the 
punch surface. An equivalent stiffness is defined according to 

and we obtain: 
E(l - V) E' = 

(1 + v ) ( l  -2v) 

the product of the tensile modulus of the layer by a rational function of its Poisson's 
ratio. This function is nothing else than the compressibility modulus in uniaxial 
tension, K" = A + 2p (where A, p are Lame's coefficients), and we obtain, therefore, as 
expected 

(9) 
We note that the same result will be obtained whatever the geometrical nature of the 

area of the punch, provided it remains flat under compression. The obtained value 
depends only on the layer compressibility; it is seen particularly that the force required 

E'= K" = 1 + 2p. 

J1 2u 

t Fl F. 1 
-U 

FIGURE 1 Equivalent description of the rigid punch problem. 
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ANALYTICAL MODEL OF ADHESIVE JOINTS 289 

to compress a very thin layer will increase drastically (and tend to infinity) when the 
layer tends to incompressibility. This seems physically reasonable since decreasing the 
thickness of the layer leads to a restriction of its ease of deformation within the bulk, 
which is prevented from any lateral movement at both contact surfaces. 

We are now interested in the mechanical behaviour of the assembly-in terms of the 
equivalent stiffness - when the thickness of the elastic layer has a finite value. One 
possible way to obtain the influence of the thickness is to continue the resolution of 
previous asymptotic expansion towards higher order terms. An examination of the 
second order solution (Klarbring15) 

4 3  = - 4 , , , Y 3  + a:, (10) 
where S:, is an interfacial stress. 

2 t(l + v)(l - 2v) u1 -- (1 + Y d Y  u1 - d&,v, with y2uz = 0 (11) 
3 -  2 E(l-v)  

reveals that the second-order solution involves the first-order stress distribution along 
the interface, which is difficult to evaluate analytically; therefore we follow another way 
and try to find first an approximate solution for the displacement. 

3. ANALYTICAL SOLUTION OF THE CONTACT PROBLEM 

3.1 Determination of an hisymmetrical Approximate Solution 

In order to simplify further the setting of the problem, we consider an equivalent 
description (Fig. 1): the influence of the material lying outside the contact area is 
neglected, and the elastic layer is compressed on both sides (normal displacement 
imposed on both upper and lower faces), the displacement being now half of that of the 
original problem, in order to keep the same relative displacement of the elastic layer 
faces. This makes the model symmetrical with respect to the loading. 

In the same way as before, it is supposed that perfect adhesion conditions prevail on 
both interfaces, so that the displacement is continuous. Since both adherends are 
assumed rigid, this condition implies the nullity of the radial displacement on both faces. 
Due to the symmetries of the problem, we can reduce the analysis to one quarter of the 
original domain, i.e. to the volume (r,  z )  E [0, a] x [0, t/2] in cylindrical coordinates. 

We suppose that each meridian section of the domain deforms by keeping in the 
same meridian plane, so that we can assume that the angular displacement is zero and 
that there is no dependence of the field variables on the angular variable. The governing 
equations of the problem are then deduced from general Lame and Clapeyron 
conditions (Dud6) which are expressed in terms of two differential equations in the 
radial and normal displacements: 

(Vz - 1/rz)2u, = 0. (12) 

v4u, = 0, (13) 
when volume forces can be neglected, and where Vz is the Laplacian operator 
vz = a, + (l/r) a, + (l/rZ) aee 
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290 J. F. GANGHOFFER AND J. SCHULTZ 

The kinematic boundary conditions are: 

z = t / 2 : u Z =  - U  and u , = Q  z = - t / 2 : u 2 = U  and u,=O; z = O : u z = Q  

r = 0 :  u, = 0 (14) 

and the static conditions are those of null traction on the lateral surface of the layer 
(r = a). 

We further simplify the problem by assuming in the case of a thin layer that a section 
z constant will remain plane, and therefore du,/ar = 0, which implies that the normal 
displacement depends only on the normal variable. Under this condition, the bihar- 
monic function f is determined from 

v4f= 0 (15) 

as deduced from (13). We look for a polynomial dependence off in the variable z, so 
that the set of boundary conditions to be satisfied implies that the normal displacement 
is 

(t/2)2 - z2 uz 
(t/2)2 t / 2 ‘  

-- u, = z 

The form of the radial displacement is found by supposing temporarily the material 
incompressible, which implies the following kinematic condition 

au 1 a 
az r a r  
-f + --(ru,) = 0, 

so that 
3z2  i a  U 

- - ( r u , ) = 2 - +  r ar t I-- 

(17) 

and we deduce that u, is the product of r by a second degree polynomial in z. The 
boundary conditions are then satisfied only when 

The expression of the radial displacement will be assumed in the following for a rubber 
layer, which is a quasi-incompressible material. 

3.2 Calculation of the Equivalent Stiffness from the Rftz Method 

We are looking for an approximate displacement solution of the problem depicted 
in Figure 1; for that purpose, we first solve the same problem but with homo- 
geneous boundary conditions. Indeed, the space of admissible displacements 
U,, = { (u, U , ) E  H1(R)2/u, = 0 at r = 0; u, =O at z = 0; u, = 0 and u, = - U at z = t/2; 
u, = U and u, = 0 at z = - t / 2 )  becomes a vectorial space under following translation 
of the solution: 

- u.2 
u = uo +a, Uo 
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ANALYTICAL MODEL OF ADHESIVE JOINTS 29 1 

and the new displacement, t2, belongs to the translated space, V, with homogeneous 
boundary conditions: 

~~€V={(U,U,)EH~(~)~/U,=O at r=O; v,=O at z=O; v,=O=v, at z = _ + t / 2 } .  

We, therefore, seek an approximate solution for the new variable a in the two- 
dimensional vector space spanned by the vectors e ,  = (r(b' - z2/b2),  0); e, = 
(0, z (b' - z2/b2), corresponding to the displacement field given by Eqs. (16), (19), so 
that we write t2(r,z) = y l e ,  + y z e 2 ,  where coefficients ( y , , y 2 )  are determined from a 
variational formulation described in Appendix 1. The following expression is found: 

(21) 
20UL2/b a =  - 3 -  

( A + 2 p ) { e 1  2 + 8 1 2 - 3 ( 2 + 2 p ) ( 5 p a 2 / b 2  + 1 6 ( 2 + p ) ) e 2 }  

and the solution of the original problem (non-homogeneous boundary conditions) is 
given by (20). 

The constitutive law implies the following expression for the normal stress exerted on 
the upper face of the layer: 

from which we deduce the total compression force 

F = (2  + 2p)na2(2yZ + U/b).  (22) 

We now come back to the original punch problem in which the lower surface of the 
elastic layer is clamped, so that we multiply the imposed displacement by 2 (cf. Fig. l), 
resulting in an equivalent stiffness 

20 I' 
E e = ( 2 + 2 p ) *  1 - ( 3(I + 2p)(5pfi2 + 16(A + p))  - 82' 

in which we recognise the uniaxial compression stiffness under uniaxial tension, 
K" = I + 2p. Expression (23) can be simplified after having set 

E' 20 
-=f(E,/?)= 1 - K" 40 + 48(2e2 + 3 4  + 15/?'(2~' + E)' 

The normalised equivalent stiffness appears, therefore, as a function of the two 
non-dimensional parameters E and fi. 

Parameter E depends only on Poisson's ratio through E = ( 1  - 2v/2v), and tends to 
zero when the behaviour tends to incompressibility; large (resp. small) values of 
parameter /I (resp. parameter y = t/u) are obtained for thin layers (compared with the 
punch radius). 

When the layer becomes very thin, we note that the equivalent stiffness tends to 
its exact value, K", and we should, therefore, expect that the obtained expression gives 
an accurate effect of the layer thickness, for thin layers. 
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292 J. F. GANGHOFFER AND J. SCHULTZ 

4. ASSESSMENT OF THE MODEL 

4.1 Comparison with Finite Element Calculations 

In order to assess the range of validity of the derived model, a numerical simulation 
using finite elements (FE code TEXPAC" used for the calculations is specific for 
treating nearly incompressible elastic materials like rubber) has been established. The 
elastic layer is chosen much longer (typically, its length was imposed to be three times 
the punch radius) than the punch diameter. Both the punch and the elastic layer have 
been discretized using rectangular quadratic elements (so that the edges of the elements 
were allowed to be curved), and bending of the contact surface between the layer and 
the punch was avoided by imposing very high mechanical properties to the punch (this 
is particularly important when considering a very thin, nearly incompressible layer); 
the lower face of the layer was prevented from any displacement, while a compressive 
effort was applied to the upper face of the punch. The calculation then provides the 
resulting displacement of the contact surface, which was checked to be uniform. 
Calculations were performed over a range of values of the ratio fl~[l,lOO] and for a 
value of Poisson's ratio equal to 0.48, representing a nearly incompressible layer 
(Young's modulus was taken arbitrarily as 1 MPa, which is a typical value for,rubber). 
For that value, function f ( ~ , b )  expresses as 

20 
f ( E ' s )  - (45,91 + 0, 65p2) 

The equivalent normalised stiffness derived from the present model is compared with 
that obtained from the simulation in Table I and on Figure 2, in which we determine for 
each value of parameter /I the relative error between the simulation and the theory. 

It is seen from these results that the theoretical estimate of the equivalent stiffness 
gives an accurate estimation of the calculated value when the layer thickness is less than 
one-fourth the punch radius, and can therefore be considered as representative of the 
actual behaviour of a thin elastic layer being compressed by a flat rigid cylindrical 
punch. When the ratio a/t  becomes very large, numerical calculations underestimate 
the equivalent stiffness, whereas the analytical expression gives an exact asymptotic 
value of it. As expected, the theory gives a poor agreement with FE calculations when 

TABLE I 
Theoretical and calculated equivalent stiffness as a function of geometry ratio 

1 = ajt 1 2 4  6 8 10 12 14 16 18 

(E'/K") simulation 0.34 0.44 0.63 0.73 0.79 0.83 0.841 0.86 0.878 0.898 
( E P / K Y )  theory 0.57 0.587 0.64 0.71 0.77 0.819 0.856 0.884 0.90.5 0.92 
Relativeerror % 41 25 1.9 3.2 2.4 1.5 1.8 2.75 3 2.5 

1 = a/t 20 22 24 26 28 30 40 50 100 

(E'IK") simulation 0.9025 0.9134 0.921 0.928 0.934 0.934 0.964 0.965 0.982 
(E'IK") theory 0.934 0.94 0.95 0.958 0.964 0.97 0.98 0.988 0.997 
Relativeerror % 3.4 3.3 3.3 3.2 3.1 3.5 1.8 2.3 1.5 
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~=0.4999 

i 

punch radius / layer thickness (log scale) 

FIGURE 2 Equivalent modulus E' us. ratio of punch radius, u, to layer thickness, t .  for various values of 
Poisson's ratio (log scale). E denotes the tensile modulus of the elastic layer. 

considering geometrical ratios outside this range (when the thickness becomes compa- 
rable with, or larger than, the punch radius). 

4.2 Effect of Layer Compressibility 

The equivalent stiffness (normalised by the traction modulus) has been calculated by 
finite elements for different values of Poisson's ratio near incompressibility, in the set 
VE {0,48; 0,49; 0,495; 0,49988}, Figure 3. For a thin layer, it is shown that even a small 
variation of the material compressibility has a strong effect on the mechanical 
behaviour (this is particularly marked when approaching the asymptotic value for very 
large ratios ofall). On the other hand, a small effect is observed when thelayer thickness 
becomes comparable with the punch radius; we have checked numerically that there is 
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Punch radius I layer thickness 

1 . I . I . I . l .  

0 2 0  4 0  60 80  100 120 

FIGURE 3 Comparison of numerical and analytical evaluations of the equivalent modulus us. ratio of 
punch radius to layer thickness. Poisson’s ratio is equal to 0.48. 

no more effect of Poisson’s ratio when the thickness is more than ten times as large as 
the punch radius, the asymptotic value rached for very thick blocks being evidently 
equal to the Young’s modulus of the layer (this can be proved using a variational 
formulation in term of stresses, resulting in an upper bound of the stiffness, which can 
be shown to be above the tensile modulus of the material). 

In addition, it is seen that the convergence of the equivalent stiffness towards its 
asymptotic value for thin layers becomes very slow when the behaviour tends to 
incompressibility, since there is then a drastic increase of the uniaxial compression 
modulus, which competes with the reduction in thickness necessary for keeping 
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TABLE I1 
Effect of Poisson's ratio on convergence of the equivalent stiffness towards its asymptotic value 

Poisson's ratio, v 0.48 0.4825 0.485 0.4875 0.49 0.4925 0.495 0.4975 0.499 0.4995 

E =  1 -2v 0.04 0.035 0.03 0.025 0.02 0.015 0.01 0.005 0.002 0.001 
K" 1284.86 1436.18 1664.64 1984.54 2464.4 3264.3 4864.2 9664.1 24064 48064 
(E'IK") 0.92 0.909 0.8966 0.884 0.863 0.837 0.79 0.708 0.56 0.43 

normalised stiffness near unity. Such an effect has been assessed numerically, consider- 
ing a layer thickness twenty times smaller than the punch radius, and making Poisson's 
ratio vary from 0.48 to 0.4995 (Table 11); previously defined parameter E is approxi- 
mated by E = 1 - 2v. 

It is seen that the normalised stiffness is nearly unity (within a relative error less than 
20%) up to a value of Poisson's ratio equal to 0.495; for less compressible materials, the 
thickness must be much more decreased in order to keep the same global mechanical 
behaviour: for instance, considering a value of Poisson's ratio equal to 0.4995, a simple 
calculation shows that the relative variation of the stiffness from its asymptotic value is 
less than 10% only for a ratio fi = a/t greater than 100. 

A simple calculation shows that the derivative of the normalised stiffness (Eq. 6) 
for a fixed finite value of Poisson's ratio ( E  is fixed) has a principal term for a thin 
layer given by (af/LJy) = - 8y/3(2g2 + E). This provides further confirmation of the 
asymptotic behaviour for thin layers, since this derivative tends to zero with the 
layer thickness, and the convergence towards the asymptotic value is slower for 
small values of E (this parameter appears at the denominator). Since the modelling of 
very thin layers is a source of numerical troubles, the theoretical model derived 
previously is used to assess the effect of material compressibility for a thin layer. The 
equivalent stiffness is developed as an asymptotic expansion uersus both geometrical 
and physical small parameters y = t /a and E = 1 - 2v, respectively; this part is presented 
in Appendix 2. 

5. RUPTURE BEHAVIOUR 

5.1 Determination of the Rupture Stress from the Solution of the Contact Problem 

Adhesion of a rigid flat-ended cylindrical punch to an elastic layer was first treated by 
Kendall." He evaluated the loss in strain energy, W, in the layer as a circular ring 
becomes detached at the edge of the flat surface of the punch and spreads inwards. The 
criterion for rupture propagation for linear elastic systems is obtained from Griffth's 
fracture criterion 

where A is the area debonnded (A = n(az - rZ) for a punch of radius a with only a 
central region of radius r still adhering), Go is the fracture energy per unit of bonded 
surface and the derivative is taken at constant displacement U. 
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From the rupture criterion, Eq. (32), the expression for the rupture force, F,, is easily 
deduced as 

F: = - 2 c , / ( a c / a ~ ) =  -4nIc,(ac/ar) (28) 
where the compliance C = V/F has been introduced. 

The average rupture stress, on, can then be expressed as a function of the geometrical 
parameters r and t using the general expression for the equivalent stiffness, E e =  
(FtIA V) = g(r, t)K", resulting in 

- 
-- - - 

0.495 

-- 

-- 

-- 
-- 

-- 

a+ 

2E'G, 1 
g," =- 

I g' ( I ,  t )  1 I- 
t 

where g' denotes (ag/ar). 
Function g(r,t) can be evaluated either by F E  calculations, as was done by 

Ganghoffer,22 or using the analytical expression derived previously. Using the latter 
method gives the following expression for the rupture stress: 

Since the analytical expression for f in (28) is valid with a good accuracy (relative 
error is less than 3%) when the ratio a/t is greater than 4, the resulting rupture stress 
also describes correctly the physical reality; the so-determined rupture stress corre- 
sponds to the maximum force recorded when exerting traction effort on the punch 
initially glued on the elastic layer surface. 

The relevant rupture variable, to:, is plotted on Figure 4 uersus the geometrical ratio 
B, using logarithmic scales for both variables, and material parameters (adhesion 
energy, traction modulus, Poisson's ratio near 0.5) correspond to the adhesion 
measurements using a rigid flat punch glued on a soft rubber sheet, rupture occurring 
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at the punch/glue interface (Ganghoffer’,). It is seen that the stress needed for 
propagating failure increases gradually as the ratio a/t increases, and tends to a limiting 
value for very thin layers given by (mJ&), since the equivalent modulus tends to 
a constant value equal to the compressibility modulus K” (Eq. (29)). 

When the ratio a/t  is large, compressibility has a strong effect on the effective 
modulus of the rubber layer and, hence, on the mechanics of fracture. A change of 
Poisson’s ratio from 0.495 to 0.48-which is still representative of rubbery materials- 
causes a reduction of the rupture force by a factor of about 5, as deduced from (30), 
Figure 4. This effect points to a need for accurate measurements of compressibility. 

5.2 Asymptotic Value of the Rupture Stress for Thin Layers 

We consider first the thermodynamics of fracture propagation, following, for instance, 
the analysis by Ma~g in . ’~  The total dissipation, CP, can be deduced to be the product of 
the time derivative of the area created during fracture propagation by its ther- 
modynamic counterpart, G, which is the force due to the singularity at the crack tip: 
CP = Gk. This leads to a crack propagation criterion with a threshold (the surface energy) 
known as Griffith’s criterion: a crack propagates only when G is above a material 
dependent quantity, G,. For a rupture that propagates within a material layer (an 
adhesive, for instance) having thickness, t, in the direction, el, the quantity G can be 
expressed as the contour invariant integral 

(31) 
1 G = limr+o- ( W N ,  - N j ~ i j ~ j , l ) d I ‘  
t .lr 

where r is a contour around the crack front, W, is the strain energy density and 0 is the 
Cauchy stress tensor. N is the normal to the rupture propagation direction, so that 
N ,  = NieIz represents the projection of N in the direction of crack propagation. An 
equivalent expression to (31) is 

d U i  

8x1 
G = limp+o jr W d x ,  - ti--dS. 

We next express the tensor P on the basis ( e , , N )  and a simple calculation leads to 
following expression: 

G = -  C T , , U , , , ~ X , .  
i t  I (33) 

In order to get the asymptotic value of the rupture stress -when the thickness t tends to 
0-, we introduce the asymptotic constitutive relation (2) in (12), which results as 
expected in 

The same expression was obtained by another method by De~tuynder,’~ considering a 
simple kinematics of fracture propagation and that rupture occurs simultaneously 
within the whole adhesive thickness. It can be seen that the rupture stress tends to 
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infinity when the layer thickness tends to 0. This can be explained as follows: when the 
thickness of an elastic layer approaches zero, the compliance becomes zero also, which 
means that no deflection occurs under load. Therefore, no energy is stored to be released 
by a fracture, and the force required to propagate rupture becomes infinitely large. This 
is true whatever the mode of deformation of the layer, i.e. by dilatation or by shear. 

6. CONCLUSION 

Analytical models of adhesion problems are scarce in the literature, since the generally 
complex mechanical behaviour of the adhesive necessitates the use of a numerical 
method, even for relatively simple geometries. In this paper, an analytical model for the 
contact and rupture behaviour of an elastic adhesive layer adhered to a rigid punch has 
been established. An approximate displacement field has been determined, using 
successively the governing equations for a nearly incompressible material (rubber), and 
a variational formulation of the problem. The global behaviour of the layer undep 
compression evaluated in this way has been shown to describe accurately (it compares 
well with F.E. calculations) both geometrical (effect of the layer thickness) and 
mechanical (effect of layer compressibility) effects. The analytical solution bypasses the 
limitations encountered in the numerical modelling of thin layers, since it describes the 
asymptotic behaviour (when the layer thickness vanishes) more accurately than the 
finite element simulation does. 

Perfect adhesion conditions at the interfaces punch/layer and layer/foundation have 
been assumed in this work, so that the present problem should be extended towards 
consideration of interfacial decohesion. 

Asymptotic methods should find successful applications in the analysis of a wide 
range of contact and adhesion problems, since they lead to the establishment of contact 
laws for thin material layers. Treatment of the case where the adhesive or one of the 
adherends is curved (as in the peel test) or for fiber problems (fragmentation and 
pull-out test in fiber composite materials), considering differential material behaviour 
laws are such perspectives. 

Appendix 1 Determination of an approximate displacement field 

Elasticity problems are usually classified according to the nature of the boundary 
conditions (there are three main classes of problems), and with each is associated a 
specific appropriate variational formulation; a detailed presentation of variational 
formulations in linear elasticity can be found in Duvaut.I7 

In the present case, an integral setting equivalent to the differential equations and 
boundary conditions satisfied by the solution is: 

(Pl): Find U E  U,, such that a(u, u - u) = L(u - u), V"E U,, 

a(u, u) = (le(u)e(u) + ~ ~ E ~ ~ ( u ) E ~ ~ ( u ) ) ~ Q  I* 
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where e ( . )  is the trace of the small strain tensor g ( . ) ,  R is the volume occupied by the 
layer, rl is the portion of the boundary on whichiractions F are applied, and U,, is the 
set of the kinematically admissible fields, that is U,, = {u/ui = ui on To; UEH'(Q)~}, 
where To is the complementary part of the boundary on which displacements are 
specified. 

Considering our particular problem, the space of kinematically admissible fields is 

U,, = { ( u ,  u,)EH'(R)~/u, = 0 at r = 0; u, = 0 at z = 0; u, = 0 and 

u, = - U at z = t/2; u, = U and u, = 0 at z = - t/2} 

so that one can identify the boundary To with the subset 

and the boundary rl is the lateral surface of the layer, i.e. the set {(a, Z ) / Z E [  - t/2, t/2] }. 
The variational setting of the problem can be shown to be equivalent to the classical 

differential equations of the linear elasticity problem: 

o...=o 1J.l ( A l . l )  

( A  1.2) 

u i = U i  on To (A1.3) 

oijnj = Fi on rl (A1.4) 

Existence and uniqueness of the solution of the variational problem is deduced from 
application of the Laxmilgram theorem, which relies on mathematical statements 
concerning the regularity of forms a(u, u), L(u) and coercivity of the bilinear form a(u, u). 
The solution itselt must have certain regularity properties, and particularly its first- 
order derivatives must be bounded, so that it belongs to the Sobolev space 
H' = (R) = {q/qeL2(f2); ( d q / d x i ) ~ L 2 ( Q ) ) ,  where L2(R) is the space of squared integra- 
ble functions. A detailed analysis of the mathematical statements concerning the 
functional form of elasticity problems can be found in Duvaut179'8 and Brezis." Such 
mathematical considerations are not needed for the understanding of further develop- 
ments and we, therefore, stay with the elementary presentation given above. 

Considering our particular problem, we note that the space of admissible displace- 
ments 

Uad={(~r ,u , )~H1(R)2/u ,=0  at r = 0 ;  u z = O  at z = O ;  u r = O  and 

u,= - U at z =  t/2; v z =  U and u, = O  at z =  -t/2 

becomes a vectorial space under following translation of the solution: u = u,, + d, with 
uo(O, - U.z/t/2), and the new displacements, u*, belongs to the translated space, V, with 
homogeneous boundary conditions: 

~ E V =  ((U~,U,)EH~(R)~/U,=O at r = Q  u,=O at z=@ u r = o = u ,  at z =  +t /2 }  
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Since no surface forces are applied, the linear form L is null and, according to previous 
translation of the solution, we obtain the following equivalent problem: 

(P2): Find I ~ E  I/ such that 

u(I2, u) = - a@,, u) = - (Le(u) + 2p~,(u))*dR 
'lU I 

where the last integral reduces to (2 Ul/lt)jne(u)dQ. 
We seek the solution of this problem in a finite dimensional space, spanned by the 

two vectors associated with the approximate displacement field found in the previous 
paragraph: 

where we have set b = t / 2 .  The approximate solution, I2, is written in this two- 
dimensional space as I2 = y , e ,  + y2e2 ,  where y , ,  y, are two constants, and (P2) now 
becomes: 

(P3):  Find ( y , , y , ) c R 2  such that 

a ( e , , e l ) y l  + a ( e l , e 2 ) y 2  = - a ( u o , e l )  

4 e , , e , ) y ,  +a(e, ,e , )y ,  = 0. 
As a matter of simplification, we write uij instead of a ( e ,  e j )  in the following. 
A simple calculation gives the term - a(uO,e,)  = (4/3)(n Ulu').  

with each basis vector: 
We first evaluate the strain tensor components (in cylindrical coordinates) associated 

The determination of coefficients aij  follows after elementary calculations: 

32 2 U 2  u , = - na2 b ( l  + p)  + naz b p -2; 
15 b 

4 
5 

a2,  = - n a 2 b ( l  + 2p); 
8 

a, ,  = - n a 2 b l .  
15 

(A1.5) 

(A1.6) 

(A1.7) 

The evaluation of the coefficients y,, y,, follows: 

(A1.8) (2 + 2P) y 1 = - 3 -  
l 

20 U 12/b 
"; " = 812 - 3 ( l  + 2p)(5pa2/b2 + 16( l  + p)) '  

Appendix 2 Asymptotic expansion of the equivalent stiffness versus layer 
thickness and compressibility 

We obtain further insight into the influence of a finite value of Poisson's ratio 
by making a series development of the normalised stiffness (24) in terms of the 
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geometrically small parameter, y: 

(2 + 12/5(2e2 + 3 ~ )  
K" - 1 -  3 ( 2 ~ '  4y2 + E )  - 2 7 3  (3/4(2c2 + E))"' + o(Y)3 
E' -- (A2.1) 

Development (A2.1) is an asymptotic expansion in the variable y, for a finite value of 
parameter E. We are now interested in deriving such an expansion when both par- 
ameters, E and y, tend to zero. Since the ratio ( y / ~ )  intervenes in the derivation of this 
development, we make the hypothesis that y is of the form 

= eEa (A2.2) 

where 6 > 1 and 8 are fixed constants. 
We justify this model by the fact that the denominator of expression (A2.1) of the 

normalised stiffness-when written in variables y and &-contains powers of ~ / y ;  since the 
normalised stiffness tends to unity when the layer thickness tends to zero (y + 0) 
whatever the value of E (thus, also, in the case when both parameters tend to zero), this 
implies the value 6 > 1. 

Introducing relation (A2.2)into Eq. (A2.1) leads to a double asymptotic expansion of 
the normalised stiffness given by 

-- E' -I----- 4 y  8y-2(j) 4 2 y 2  p-T()fy2-5() 12 4 12 4 y 2 ~ + o ( y 2 ~ )  (A2.3) 
K" 3E 3 

and the constraint 6 > 1 implies that the ratio Y / E  tends to zero with y. 
This development (which evidently depends on the analytical model built) makes 

clear that the mechanical behaviour of the elastic layer under contact with the punch is 
influenced by the mutual interplay of geometrical and physical small parameters, 
y = t/a and E x 1-2 v, respectively. 
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